Rapid control prototyping for robot soccer

نویسندگان

  • Junwon Jang
  • Soo Hee Han
  • Hanjun Kim
  • Choon Ki Ahn
  • Wook Hyun Kwon
چکیده

In this paper, we propose rapid control prototyping (RCP) for a robot soccer using the SIMTool that has been developed in Seoul National University, Korea for the control aided control system design (CACSD). The proposed RCP enables us to carry out the rapid design and the verification of controls for two-wheeled mobile robots (TWMRs), players in the robot soccer, without writing C codes directly and requiring a special H/W. On the basis of the proposed RCP, a blockset for the robot soccer is developed for easy design of a variety of mathematical and logical algorithms. All blocks in the blockset are made up of basic blocks offered by the SIMTool. User-defined algorithms can be easily and efficiently constructed with just a combination of the blocks in the blockset. In order to validate the proposed RCP in a real game, we employ an official simulation game for the robot soccer, the SimuroSot. Block diagrams are constructed for strategy, path calculation, and the interface to the SIMTool. We show that the algorithms implemented with the proposed RCP work well in the simulation game.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

Rapid software prototyping for real-time simulation and control of a mini-helicopter robot

This paper presents a rapid software prototyping environment, based on Matlab/Simulink, for realtime simulation and control of a mini-helicopter robot. The application of the environment is illustrated with a software-in-the-loop simulation example. The environment is integrated by own modules (mini-helicopter simulation model, navigation filter, multirate control, filters) and modules based on...

متن کامل

NaOISIS: A 3-D Behavioural Simulator for the NAO Humanoid Robot

We present NaOISIS, a three-dimensional behavioural simulator for the NAO humanoid robot, aimed at designing and testing physically plausible strategic behaviours for multi-agent soccer teams. NaOISIS brings together features from both physical three-dimensional simulators that model robot dynamics and interactions, and two-dimensional environments that are used to design sophisticated team coo...

متن کامل

Soccer Goalkeeper Task Modeling and Analysis by Petri Nets

In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotica

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2009